目录
引言
随着大语言模型(LLM)技术的快速发展,单纯的文本生成已经无法满足复杂应用场景的需求。**工具调用(Tool Calling)**作为一种重要的扩展机制,让大模型能够与外部系统交互,获取实时数据,执行特定任务,从而构建更加智能和实用的 AI 应用。
本文将深入探讨大模型工具调用的核心原理,并通过一个完整的 Rust 项目案例,详细讲解如何实现一个支持天气查询和网络搜索的智能助手,使用原生的HTTP调用方式,不使用任何第三方LLM服务的客户端,比如Python的openai库,这样便于对原理有更清晰的理解,也便于根据任何编程语言开发自己工具,而不局限于特定库。
大模型工具调用算是LLM中一种动态获取,或说实时获取与用户提问相关数据的一种方式,为用户的问题提供可靠的上下文。另外一种方式基于RAG的方式,这种是基于知识库,更像是一种静态知识。之后会用别的文章再来讨论,敬请期待。
关键词
- 大语言模型 (Large Language Model, LLM)
- 工具调用 (Tool Calling)
- Function Calling
- AI Agent
- Rust 异步编程
- DeepSeek API